Crispin Gardiner

Stochastic Methods

A Handbook for the Natural and Social Sciences

Fourth Edition

;

Contents

r

1.	A Hi	istorical Introduction	1
	1.1		1
	1.2	Some Historical Examples	2
		1.2.1 Brownian Motion	2
		1.2.2 Langevin's Equation	6
	1.3	The Stock Market	8
		1.3.1 Statistics of Returns 8	8
		1.3.2 Financial Derivatives	9
		1.3.3 The Black-Scholes Formula 10	0
		1.3.4 Heavy Tailed Distributions 10	0
	1.4	Birth-Death Processes 11	1
	1.5	Noise in Electronic Systems 14	4
		1.5.1 Shot Noise 14	4
		1.5.2 Autocorrelation Functions and Spectra 18	
		1.5.3 Fourier Analysis of Fluctuating Functions: Stationary Systems 19	
		1.5.4 Johnson Noise and Nyquist's Theorem 20	0
ſ	Duck	pability Concepts	2
2.	2.1	v 1	
	2.1	Events, and Sets of Events 22 Probabilities 24	
	2.2		
		· · · · · · · · · · · · · · · · · · ·	
		2.2.2The Meaning of $P(A)$ 242.2.3The Meaning of the Axioms24	
		2.2.3 The Meaning of the Axions 2. 2.2.4 Random Variables 20	
	2.3	Joint and Conditional Probabilities: Independence	
	2.3	2.3.1 Joint Probabilities 2'	
		2.3.1 Joint Probabilities 2 2.3.2 Conditional Probabilities 2'	
		2.3.2 Conditional Probabilities of Different Orders 23 2.3.3 Relationship Between Joint Probabilities of Different Orders 23	
		2.3.5 Relationship Between Joint Probabilities of Different Orders 2.8 2.3.4 Independence 28	
	2.4	Mean Values and Probability Density	
	2.4	2.4.1 /Determination of Probability Density by Means	7
		of Arbitrary Functions	ი
		2.4.2 Sets of Probability Zero 30	-
	2.5	The Interpretation of Mean Values	
	2.5	2.5.1 Moments, Correlations, and Covariances 32	
		2.5.1 Womenus, conclusions, and covariances 32 2.5.2 The Law of Large Numbers 32	
	2.6	Characteristic Function	
	2.0	Cumulant Generating Function: Correlation Functions and Cumulants 34	
	2.1	2.7.1 Example: Cumulant of Order 4: $\langle X_1 X_2 X_3 X_4 \rangle$	
		2.7.1 Example: Cumulant of Order 4: (X1X2X3X4)/ 30 2.7.2 Significance of Cumulants 30	
	2.8	Gaussian and Poissonian Probability Distributions	
	2.0	Substant and I offsomment i robublicty Distributions	

.`

,

		2.8.1	The Gaussian Distribution	37
		2.8.2	Central Limit Theorem	38
		2.8.3	The Poisson Distribution	39
	2.9	Limits	of Sequences of Random Variables	40
		2.9.1	Almost Certain Limit	40
		2.9.2	Mean Square Limit (Limit in the Mean)	41
		2.9.3	Stochastic Limit, or Limit in Probability	41
		2.9.4	Limit in Distribution	41
		2.9.5	Relationship Between Limits	41
			و	10
3.			Deesses	42
	3.1		stic Processes	42
		3.1.1	Kinds of Stochastic Process	42
	3.2		v Process	43
		3.2.1	Consistency—the Chapman-Kolmogorov Equation	44
		3.2.2	Discrete State Spaces	44
		3.2.3	More General Measures	45
	3.3		uity in Stochastic Processes	45
		3.3.1	Mathematical Definition of a Continuous Markov Process	46
,	3.4		ential Chapman-Kolmogorov Equation	47
		3.4.1	Derivation of the Differential Chapman-Kolmogorov Equation	48
		3.4.2	Status of the Differential Chapman-Kolmogorov Equation	51
	3.5	Interpr	etation of Conditions and Results	51
		3.5.1	Jump Processes: The Master Equation	51
		3,5.2	Diffusion Processes—the Fokker-Planck Equation	52
		3.5.3	Deterministic Processes—Liouville's Equation	54
		3.5.4	General Processes	55
	3.6	-	ons for Time Development in Initial Time—Backward	
		-	ons	55
	3.7		ary and Homogeneous Markov Processes	56
			Ergodic Properties	57
		3.7.2	Homogeneous Processes	60
		3.7.3	Approach to a Stationary Process	60
		3.7.4	Autocorrelation Function for Markov Processes	63
	3.8	Examp	bles of Markov Processes	65
		3.8.1	The Wiener Process	65
		3.8.2	The Random Walk in One Dimension	68
		3.8.3	Poisson Process	71
		3.8.4	The Ornstein-Uhlenbeck Process	72
		3.8.5	Random Telegraph Process	75

4.	The	Ito Cal	culus and Stochastic Differential Equations	77
	4.1	Motiva	tion	77
	4.2	Stochas	stic Integration	79
		4.2.1	Definition of the Stochastic Integral	79
		4.2.2	Ito Stochastic Integral	81
		4.2.3	Example $\int_{t_0}^t W(t') dW(t')$	81
		4.2.4	The Stratonovich Integral	82
		4.2.5	Nonanticipating Functions	82
		4.2.6	Proof that $dW(t)^2 = dt$ and $dW(t)^{2+N} = 0$	83
		4.2.7	Properties of the Ito Stochastic Integral	85
	4.3		stic Differential Equations (SDE)	88
		4.3.1	Ito Stochastic Differential Equation: Definition	89
		4.3.2	Dependence on Initial Conditions and Parameters	91
		4.3.3	Markov Property of the Solution of an Ito SDE	92
		4.3.4	Change of Variables: Ito's Formula	92
		4.3.5	Connection Between Fokker-Planck Equation and	
			Stochastic Differential Equation	93
		4.3.6	Multivariable Systems	95
	4.4		ratonovich Stochastic Integral	96
		4.4.1	Definition of the Stratonovich Stochastic Integral	96
		4.4.2	Stratonovich Stochastic Differential Equation	96
	4.5		Examples and Solutions	99
		4.5.1	Coefficients without <i>x</i> Dependence	99
,		4.5.2	Multiplicative Linear White Noise Process—Geometric	100
			Brownian Motion	100
		4.5.3	Complex Oscillator with Noisy Frequency	101
		4.5.4	Ornstein-Uhlenbeck Process	
		4.5.5	Conversion from Cartesian to Polar Coordinates	
		4.5.6	Multivariate Ornstein-Uhlenbeck Process	
		4.5.7	The General Single Variable Linear Equation	
		4.5.8	Multivariable Linear Equations	
		4.5.9	Time-Dependent Ornstein-Uhlenbeck Process	111
5.	The	Fokker	-Planck Equation	113
	5.1		ility Current and Boundary Conditions	
		5.1.1	Classification of Boundary Conditions	
		5.1.2	Boundary Conditions for the Backward Fokker-	
			Planck Equation	116
	5.2	Fokker	-Planck Equation in One Dimension	
		5.2.1	Boundary Conditions in One Dimension	118
	5.3		ary Solutions for Homogeneous Fokker-Planck Equations	120
		5.3.1	Examples of Stationary Solutions	122
	5.4		unction Methods for Homogeneous Processes	
		5.4.1	Eigenfunctions for Reflecting Boundaries	124
		5.4.2	Eigenfunctions for Absorbing Boundaries	

.

;

		5.4.3	Examples	126
	5.5	First Pa	assage Times for Homogeneous Processes	130
		5.5.1	Two Absorbing Barriers	130
		5.5.2	One Absorbing Barrier	132
		5.5.3	Application-Escape Over a Potential Barrier	133
		5.5.4	Probability of Exit Through a Particular End of the Interval .	135
6.	The	Fokker	-Planck Equation in Several Dimensions	138
	6.1		e of Variables	
	6.2		ary Solutions of Many Variable Fokker-Planck Equations	
		6.2.1	Boundary Conditions	
		6.2.2	Potential Conditions	
	6.3		ed Balance	
		6.3.1	Definition of Detailed Balance	
		6.3.2	Detailed Balance for a Markov Process	143
		6.3.3	Consequences of Detailed Balance for Stationary Mean,	
			Autocorrelation Function and Spectrum	144
		6.3.4	Situations in Which Detailed Balance must be Generalised .	
		6.3.5	Implementation of Detailed Balance in the Differential	
			Chapman-Kolmogorov Equation	145
	6.4	Examp	bles of Detailed Balance in Fokker-Planck Equations	
		6.4.1	Kramers' Equation for Brownian Motion in a Potential	149
		6.4.2	Deterministic Motion	
		6.4.3	Detailed Balance in Markovian Physical Systems	153
		6.4.4	Ornstein-Uhlenbeck Process	153
		6.4.5	The Onsager Relations	155
		6.4.6	Significance of the Onsager Relations—Fluctuation-	
			Dissipation Theorem	156
	6.5	Eigenf	unction Methods in Many Variables	158
		6.5.1	Relationship between Forward and Backward Eigenfunctions	159
		6.5.2	Even Variables Only—Negativity of Eigenvalues	159
	•	6.5.3	A Variational Principle	160
		6.5.4	Conditional Probability	161
		6.5.5	Autocorrelation Matrix	
		6.5.6	1	
	6.6	First E	xit Time from a Region (Homogeneous Processes)	
		6.6.1	Solutions of Mean Exit Time Problems	
		6.6.2	Distribution of Exit Points	166
7.	Sma	ll Noise	Approximations for Diffusion Processes	169
	7.1	Compa	arison of Small Noise Expansions for Stochastic Differential	
				169
	7.2	Small	Noise Expansions for Stochastic Differential Equations	171
		7.2.1		174
		7.2.2	Stationary Solutions (Homogeneous Processes)	175

		7.2.3 Mean, Variance, and Time Correlation Function 17	
		7.2.4 Failure of Small Noise Perturbation Theories 17	76
	7.3	Small Noise Expansion of the Fokker-Planck Equation 17	
		7.3.1 Equations for Moments and Autocorrelation Functions 18	
		7.3.2 Example 18	
		7.3.3 Asymptotic Method for Stationary Distribution 18	84
8.	The	White Noise Limit	85
	8.1	White Noise Process as a Limit of Nonwhite Process	85
		8.1.1 Formulation of the Limit 18	86
		8.1.2 Generalisations of the Method 18	89
	8.2	Brownian Motion and the Smoluchowski Equation 19	92
		8.2.1 Systematic Formulation in Terms of Operators and Projectors 19	94
		8.2.2 Short-Time Behaviour 19	95
		8.2.3 Boundary Conditions 19	97
		8.2.4 Evaluation of Higher Order Corrections 19	98
	8.3	Adiabatic Elimination of Fast Variables: The General Case 20	02
		8.3.1 Example: Elimination of Short-Lived Chemical Intermediates 20	02
		8.3.2 Adiabatic Elimination in Haken's Model 20	06
		8.3.3 Adiabatic Elimination of Fast Variables: A Nonlinear Casé . 2	10
		8.3.4 An Example with Arbitrary Nonlinear Coupling 2	14
9.	Bevo	ond the White Noise Limit 2	16
	9.1	Specification of the Problem 2	
		9.1.1 Eigenfunctions of L_1	
		9.1.2 Projectors	
	9.2	Bloch's Perturbation Theory	
		9.2.1 Formalism for the Perturbation Theory 22	
		9.2.2 Application of Bloch's Perturbation Theory 22	22
		9.2.3 Construction of the Conditional Probability 22	23
		9.2.4 Stationary Solution $P_s(x, p)$ 22	26
		9.2.5 Examples 22	26
		9.2.6 Generalisation to a system driven by several Markov	
		Processes 22	
	9.3	Computation of Correlation Functions 2	
		9.3.1 Special Results for Ornstein-Uhlenbeck $p(t)$ 2.	
		9.3.2 Generalisation to Arbitrary Gaussian Inputs 22	
	9.4	The White Noise Limit	33
		9.4.1 Relation of the White Noise Limit of $\langle x(t)\xi(0)\rangle$ to the	
		Impulse Response Function 2	33
10.	Lévy	y Processes and Financial Applications	35
	10.1	Stochastic Description of Stock Prices 2	35
	10.2	The Brownian Motion Description of Financial Markets 2 10.2.1 Financial Assets 2	

.

)

		10.2.2 "Long" and "Short" Positions	238
		10.2.3 Perfect Liquidity	
		10.2.4 The Black-Scholes Formula	238
		10.2.5 Explicit Solution for the Option Price	240
		10.2.6 Analysis of the Formula	242
		10.2.7 The Risk-Neutral Formulation	
		10.2.8 Change of Measure and Girsanov's Theorem	
	10.3	Heavy Tails and Lévy Processes	248
		10.3.1 Lévy Processes	
		10.3.2 Infinite Divisibility	
		10.3.3 The Poisson Process	
		10.3.4 The Compound Poisson Process	
		10.3.5 Lévy Processes with Infinite Intensity	
		10.3.6 The Lévy-Khinchin Formula	
	10.4	The Paretian Processes	
		10.4.1 Shapes of the Paretian Distributions	
		10.4.2 The Events of a Paretian Process	
		10.4.3 Stable Processes	
		10.4.4 Other Lévy processes	
	10.5	Modelling the Empirical Behaviour of Financial Markets	
		10.5.1 Stylised Statistical Facts on Asset Returns	
		10.5.2 The Paretian Process Description	
		10.5.3 Implications for Realistic Models	
		10.5.4 Equivalent Martingale Measure	
		10.5.5 Hyperbolic Models	
		10.5.6 Choice of Models	
	10.6	Epilogue—the Crash of 2008	263
11.		ter Equations and Jump Processes	
	11.1	Birth-Death Master Equations—One Variable	
		11.1.1 Stationary Solutions	
		11.1.2 Example: Chemical Reaction $X \rightleftharpoons A$	
		11.1.3 A Chemical Bistable System	
	11.2	Approximation of Master Equations by Fokker-Planck Equations	
		11.2.1 Jump Process Approximation of a Diffusion Process	
		11.2.2 The Kramers-Moyal Expansion	
		11.2.3 Van Kampen's System Size Expansion	
		11.2.4 Kurtz's Theorem	
		11.2.5 Critical Fluctuations	
		Boundary Conditions for Birth-Death Processes	283
	11.4	Mean First Passage Times	284
		5 1	
		11.4.2 Comparison with Fokker-Planck Equation	
	11.5		
		11.5.1 Stationary Solutions when Detailed Balance Holds	288

١

		11.5.2 Stationary Solutions Without Detailed Balance	
		(Kirchoff's Solution)	290
		11.5.3 System Size Expansion and Related Expansions	291
	11.6	Some Examples	
		11.6.1 $X + A \rightleftharpoons 2X$	291
		11.6.2 $X \stackrel{\gamma}{\hookrightarrow} Y \stackrel{k}{\hookrightarrow} A$	
		k Y	
		11.6.3 Prey-Predator System	
		11.6.4 Generating Function Equations	297
12.	The	Poisson Representation	301
14.		Formulation of the Poisson Representation	
		Kinds of Poisson Representations	
	12.2	12.2.1 Real Poisson Representations	
		12.2.1 Kear Poisson Representations	
	10.2	12.2.3 The Positive Poisson Representation	
	12.5	Time Correlation Functions	
		12.3.1 Interpretation in Terms of Statistical Mechanics	
	10.4	12.3.2 Linearised Results	
	12.4	Trimolecular Reaction	
		12.4.1 Fokker-Planck Equation for Trimolecular Reaction	
		12.4.2 Third-Order Noise	
	10.5	12.4.3 Example of the Use of Third-Order Noise.	
	12.5	Simulations Using the Positive Poisson representation	
		12.5.1 Analytic Treatment via the Deterministic Equation	
		12.5.2 Full Stochastic Case	
	10 (12.5.3 Testing the Validity of Positive Poisson Simulations	
	12.0	Application of the Poisson Representation to Population Dynamics .	
		12.6.1 The Logistic Model	
		12.6.2 Poisson Representation Stochastic Differential Equation	
		12.6.3 Environmental Noise	
		12.6.4 Extinction	334
13.	Spat	ially Distributed Systems	336
		Background	
		13.1.1 Functional Fokker-Planck Equations	
	13.2	Multivariate Master Equation Description	
		13.2.1 Continuum Form of Diffusion Master Equation	
		13.2.2 Combining Reactions and Diffusion	345
		13.2.3 Poisson Representation Methods	
	13.3	Spatial and Temporal Correlation Structures	
		12.2.1 Denotion $V = \frac{k_1}{V}$	- · ·
		13.3.1 Reaction $X \frac{k_l}{\overline{k_2}} Y$	547
		13.3.2 Reactions $B + X \stackrel{k_1}{\underset{k_3}{\leftarrow}} C$, $A + X \xrightarrow{k_2} 2X$	350
		13.3.3 A Nonlinear Model with a Second-Order Phase Transition	355
		13.3.3 IX Nominical model with a Second-Order I hase Mansholl.	555

2

	13.4	Connection Between Local and Global Descriptions	359
		13.4.1 Explicit Adiabatic Elimination of Inhomogeneous Modes	360
	13.5	Phase-Space Master Equation	362
		13.5.1 Treatment of Flow	362
		13.5.2 Flow as a Birth-Death Process	363
		13.5.3 Inclusion of Collisions-the Boltzmann Master Equation	366
		13.5.4 Collisions and Flow Together	369
14.	Bista	bility, Metastability, and Escape Problems	372
		Diffusion in a Double-Well Potential (One Variable)	
		14.1.1 Behaviour for $D = 0$	373
		14.1.2 Behaviour if D is Very Small	37.3
	•	14.1.3 Exit Time	
		14.1.4 Splitting Probability	375
		14.1.5 Decay from an Unstable State	377
	14.2	Equilibration of Populations in Each Well	378
		14.2.1 Kramers' Method	378
		14.2.2 Example: Reversible Denaturation of Chymotrypsinogen 1	382
		14.2.3 Bistability with Birth-Death Master Equations (One Variable)	384
	14.3	Bistability in Multivariable Systems	386
		14.3.1 Distribution of Exit Points	
		14.3.2 Asymptotic Analysis of Mean Exit Time	
		14.3.3 Kramers' Method in Several Dimensions	
		14.3.4 Example: Brownian Motion in a Double Potential	394
15.	Sim	lation of Stochastic Differential Equations	401
		The One Variable Taylor Expansion	
		15.1.1 Euler Methods	402
		15.1.2 Higher Orders	402
		15.1.3 Multiple Stochastic Integrals	403
		15.1.4 The Euler Algorithm	404
		15.1.5 Milstein Algorithm	406
	15.2	The Meaning of Weak and Strong Convergence	407
	15.3	Stability/	407
		15.3.1/ Consistency	
		Implicit and Semi-implicit Algorithms	
	15.5	Vector Stochastic Differential Equations	
		15.5.1 Formulae and Notation	412
		1 0	412
		8	414
		\mathbf{c}	414
		6 1 6	415
		1 0	415
	15.6		416
	15.7	Stochastic Partial Differential Equations	417

15.7.1 Fourier Transform Methods	418
15.7.2 The Interaction Picture Method	419
15.8 Software Resources	420
References	421
Bibliography	429
Author Index	434
Symbol Index	
Subject Index	439